Analysing the performance of Speaker Verification task using different features pdfkeywords=Mel Frequency Cepstral Coefficient(MFCC), Linear Predictive Cepstral Coefficient(LPCC), Perceptual Linear Predictive(PLP), Equal Error Rate(EER)

نویسندگان

  • L. Kavitha
  • B. Bharathi
چکیده

Speaker recognition is the identification of the person who is speaking by characteristics of their voices, also called “voice recognition”. The components of Speaker Recognition includes Speaker Identification(SI) and Speaker Verification(SV). Speaker identification is the task of determining an unknown speakers identity. If the speaker claims to be of a certain identity and the voice is to verify this claim, this is called Speaker Verification. It determines whether an unknown voice matches the known voice of a speaker whose identity is being claimed. This paper proposes Speaker Verification task. There are two phases in the Speaker Verification task namely, training and testing. In the training phase, different features such as Mel Frequency Cepstral Coefficient(MFCC), Linear Predictive Cepstral Coefficient(LPCC), Perceptual Linear Predictive(PLP) are extracted from the speech signal and is trained by Support Vector Machine to get the target speaker model. It is trained with both actual speaker and impostor utterances. In the testing phase, features are extracted from the test speech signal . The test features are extracted for different duration of time. The extracted feature vectors are given to the claimed speaker model and the decision is taken as authorised speaker or an impostor. The performance of a speaker verification task is analysed using different features with different utterance sizes. The result shows that the performance of a speaker verification task decreases when the duration of the speech utterances decreased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing feature complementarity by evolution strategy: Application to automatic speaker verification

Conventional automatic speaker verification systems are based on cepstral features like Mel-scale Frequency Cepstrum Coefficient (MFCC), or Linear Predictive Cepstrum Coefficient (LPCC). Recent published works showed that the use of complementary features can significantly improve the system performances. In this paper, we propose to use an evolution strategy to optimize the complementarity of ...

متن کامل

Integrating Complementary Features from Vocal Source and Vocal Tract for Speaker Identification

This paper describes a speaker identification system that uses complementary acoustic features derived from the vocal source excitation and the vocal tract system. Conventional speaker recognition systems typically adopt the cepstral coefficients, e.g., Mel-frequency cepstral coefficients (MFCC) and linear predictive cepstral coefficients (LPCC), as the representative features. The cepstral fea...

متن کامل

Limited Data Speaker Verification: Fusion of Features

The present work demonstrates experimental evaluation of speaker verification for different speech feature extraction techniques with the constraints of limited data (less than 15 seconds). The state-of-the-art speaker verification techniques provide good performance for sufficient data (greater than 1 minutes). It is a challenging task to develop techniques which perform well for speaker verif...

متن کامل

Development of CRIM system for the automatic speaker verification spoofing and countermeasures challenge 2015

The automatic speaker verification spoofing and countermeasures challenge 2015 provides a common framework for the evaluation of spoofing countermeasures or anti-spoofing techniques in the presence of various seen and unseen spoofing attacks. This contribution proposes a system consisting of amplitude, phase, linear prediction residual, and combined amplitude phase-based countermeasures for the...

متن کامل

Identification of Sex of the Speaker With Reference To Bodo Vowels: A Comparative Experimental Study

This work presents an application of Fundamental Frequency (Pitch), Linear Predictive Cepstral Coefficient (LPCC) and Mel Frequency Cepstral Coefficient (MFCC) in identification of sex of the speaker in speech recognition research. The aim of this article is to compare the performance of these three methods for identification of sex of the speakers. A successful speech recognition system can he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013